Directional Wind–Wave Coupling in Fully Coupled Atmosphere–Wave–Ocean Models: Results from CBLAST-Hurricane
نویسندگان
چکیده
The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The Coupled Boundary Layer Air–Sea Transfer (CBLAST)-Hurricane program is aimed at developing improved coupling parameterizations (using the observations collected during the CBLAST-Hurricane field program) for the next-generation hurricane research prediction models. Hurricane-induced surface waves that determine the surface stress are highly asymmetric, which can affect storm structure and intensity significantly. Much of the stress is supported by waves in the wavelength range of 0.1–10m, which is the unresolved ‘‘spectral tail’’ in present wave models. A directional wind–wave coupling method is developed to include effects of directionality of the wind and waves in hurricanes. The surface stress vector is calculated using the two-dimensional wave spectra from awavemodel with an added short-wave spectral tail. The wind andwaves are coupled in a vector form rather than through the traditional roughness scalar. This new wind–wave coupling parameterization has been implemented in a fully coupled atmosphere–wave–ocean model with 1.67-km grid resolution in the atmospheric model, which can resolve finescale features in the extreme highwind region of the hurricane eyewall. It has been tested in a number of storms including Hurricane Frances (2004), which is one of the best-observed storms during the CBLAST-Hurricane 2004 field program. This paper describes the new wind–wave coupling parameterization and examines the characteristics of the coupled model simulations of Hurricane Frances (2004). Observations of surface waves and winds are used to evaluate the coupled model results.
منابع مشابه
Symmetric and Asymmetric Structures of Hurricane Boundary Layer in Coupled Atmosphere–Wave–Ocean Models and Observations
It is widely accepted that air–sea interaction is one of the key factors in controlling tropical cyclone (TC) intensity. However, the physical mechanisms for connecting the upper ocean and air–sea interface with storm structure through the atmospheric boundary layer in TCs are not well understood. This study investigates the air–sea coupling processes using a fully coupled atmosphere–wave–ocean...
متن کاملThe CBLAST-Hurricane Program and the Next- Generation Fully Coupled Atmosphere–Wave–Ocean Models for Hurricane Research and Prediction
sphere–wave–ocean modeling system that is capable of resolving the eye and eyewall at ~1-km grid resolution, which is consistent with a key recommendation for the next-generation hurricane-prediction models by the NOAA Science Advisor Board Hurricane Intensity Research Working Group. It is also the National Centers for Environmental Prediction (NCEP) plan for the new Hurricane Weather Research ...
متن کاملOcean - Wave Coupled Modeling in COAMPS - TC : A Study of Hurricane Ivan ( 2004 ) 0603207 N 73 - 9270 - 01 - 5
Tropical cyclone ocean–wave model interactions are examined using an ESMF – (Earth System Modeling Framework) based tropical cyclone (TC) version of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS ). This study investigates Hurricane Ivan, which traversed the Gulf of Mexico (GOM) in September 2004. Several oceanic and wave observational data sets, including Acoustic Doppler Cur...
متن کاملNext-Generation Air–Ocean–Wave Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)
Introduction: A team of NRL scientists from the Marine Meteorology and Oceanography Divisions has successfully transformed the one-way air–ocean Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®*) into a six-way fully coupled air–ocean– wave weather and marine forecasting system. This was accomplished using the state-of-the-art Earth System Modeling Framework (ESMF), making COAMPS t...
متن کاملOcean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations
Forecasting hurricane impacts of extremewinds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and direc...
متن کامل